W erze globalizacji i cyfrowej transformacji, automatyczne tłumaczenie staje się kluczem do sukcesu wielu firm. Wyobraź sobie sytuację, w której Twoja firma otrzymuje ważny dokument w języku niemieckim, a Ty potrzebujesz natychmiastowego tłumaczenia. Bariery językowe mogą stać się naprawdę poważną przeszkodą w prowadzeniu międzynarodowego biznesu. Dlatego narzędzia do tłumaczenia maszynowego stają się nieocenione. Ale które z nich jest lepsze dla Twojego biznesu? Czy wiesz, którego tłumacza maszynowego wybrać? Czy wykorzystać popularny Google Translate, czy może nowszy, ale bardzo skuteczny DeepL? Oto dogłębna analiza.
Tłumaczenia maszynowe dla biznesu – omówione zagadnienia:
Co to jest neuronowe tłumaczenie maszynowe?
Neuronowe tłumaczenie maszynowe to zaawansowana forma tłumaczenia, która wykorzystuje głębokie sieci neuronowe do analizy i tłumaczenia tekstu. W przeciwieństwie do wcześniejszych metod, które tłumaczyły tekst według ustalonych reguł lub statystyk, neuronowe tłumaczenie maszynowe analizuje całe zdania, uwzględniając kontekst. Korzystają z niego najnowocześniejsze narzędzia takie jak Google Translate, DeepL, Microsoft Translator czy Yandex.
Zalety i wady tłumaczenia maszynowego
Główną zaletą tłumaczenia maszynowego jest zdolność do tworzenia bardziej płynnych i naturalnych translacji. Na przykład, podczas gdy wcześniejsze wersje Google Translate tłumaczyły każde słowo z osobna, nowoczesne technologie neuronowe są w stanie poprawnie zinterpretować to słowo w kontekście. Wadą jest natomiast konieczność dostępu do ogromnych baz danych i zaawansowanej mocy obliczeniowej.
Google Translate. Najpopularniejszy wybór
Google Translate, uruchomiony w 2006 roku, początkowo opierał się na metodach statystycznych. Jednak dzięki inwestycjom w technologie neuronowe, jakość tłumaczeń znacząco się poprawiła. Obsługując ponad 130 języków, Google Translate jest w stanie tłumaczyć:
- teksty – po wklejeniu w okno translatora w przeglądarce internetowej,
- obrazy – szczególnie przydatne w przypadku tłumaczenia języków posługujących się innym zapisem niż język, na który dokonujemy translacji; obsługuje formaty .jpg, .jpeg, i .png,
- pliki tekstowe – w formatach .docx, .pdf, .pptx, oraz .xlsx
- całe strony internetowe – po wklejeniu adresu strony tłumaczony tekst pozostaje w pierwotnym miejscu.
Jest również zintegrowany z wieloma usługami Google, takimi jak przeglądarka Chrome czy Google Docs, co czyni go łatwo dostępnym dla użytkowników na całym świecie. Można także korzystać z API, czyli wykorzystać Google Translate do automatycznego tłumaczenia swojej strony czy aplikacji.
Translator od Googla jest dostępny na platformach internetowych, Android i iOS. Jedną z najbardziej praktycznych funkcji Google Translate jest tłumaczenie stron internetowych poprzez URL, czego nie posiada jego konkurent, DeepL.
DeepL. Wschodząca gwiazda tłumaczenia maszynowego
DeepL bardzo szybko zdobył uznanie za swoją zdolność do dostarczania tłumaczeń o wyższej jakości niż konkurenci. DeepL trenuje swoje sieci neuronowe wykorzystując bazę danych Linguee, co pozwala na bardziej precyzyjne tłumaczenia. W tej chwili obsługuje 28 języków i oferuje unikalne funkcje, takie jak słownik tłumaczeń i dostosowywanie tonu.
Co więcej, DeepL oferuje płatną wersję Pro, która zapewnia dodatkowe funkcje, takie jak większy limit znaków i dostęp do API. Jest dostępny na platformach internetowych, desktopowych (Mac i Windows), Android i iOS.
Google Translate vs DeepL. Porównanie
Chociaż obie platformy wykorzystują technologie neuronowe, różnią się w kilku kluczowych aspektach.
- Dokładność tłumaczenia – DeepL zazwyczaj osiąga lepsze wyniki niż Google Translate w testach ślepych, zwłaszcza dla par języków europejskich. W testach, w których oceniano tłumaczenia, DeepL często miał lepsze wyniki tłumaczenia. Ponadto tłumaczenia DeepL są bardziej naturalne, zwłaszcza dla języków europejskich.
- Obsługiwane języki – Google Translate obsługuje ponad 130 języków, co czyni go zwycięzcą w tej kategorii. W przeciwieństwie do tego DeepL obsługuje tylko ponad 30 języków. Chociaż obie usługi obejmują popularne języki, Google Translate oferuje więcej opcji dla mniej popularnych języków.
- Integracje/Opcje – Obie usługi oferują interfejsy internetowe dla przypadkowego tłumaczenia. DeepL oferuje aplikację na pulpit dla systemów Windows i macOS, podczas gdy Google Translate nie. Obie mają aplikacje mobilne. Do tłumaczenia stron internetowych obie oferują usługi API.
- Cena – Zarówno Google Translate, jak i DeepL oferują darmowe wersje internetowe. W przypadku korzystania z API obie mają darmowy limit do 500 000 znaków miesięcznie. Google Translate pobiera opłatę w wysokości 20 dolarów za każdy milion znaków po przekroczeniu darmowego limitu, podczas gdy DeepL ma stałą stawkę 5,49 dolarów miesięcznie plus 25 dolarów za milion znaków.
5 zastosowań automatycznego tłumacza dla biznesu
Współczesny biznes coraz częściej korzysta z automatycznych tłumaczeń. Dzięki nim możliwe jest szybkie i efektywne przekładanie dokumentów, stron internetowych czy komunikacji z klientami z różnych krajów.
- Automatyczne tłumaczenie dokumentów
- Lokalizacja stron internetowych i aplikacji
- Tłumaczenie głosowe w czasie rzeczywistym
- Automatyczna translacja tekstu na obrazie i wideo
W świecie biznesu, gdzie czas to pieniądz, szybkość tłumaczenia jest kluczem. Wyobraź sobie międzynarodową korporację, która codziennie otrzymuje setki dokumentów w różnych językach. Zamiast czekać dni lub tygodnie na tłumacza, można użyć DeepL lub Google Translate do szybkiego przetłumaczenia i wstępnej analizy.
W dzisiejszych czasach wielojęzyczna obecność online jest kluczem do globalnego sukcesu. Dzięki automatycznemu tłumaczeniu, firmy mogą łatwo i szybko lokalizować swoje strony internetowe i aplikacje dla różnych rynków.
Technologia ta ma ogromny potencjał, zwłaszcza w sektorze turystycznym i hotelarskim. Wyobraź sobie hotel, który korzysta z tłumaczenia głosowego w czasie rzeczywistym, aby komunikować się z gośćmi z różnych krajów. To nie tylko poprawia doświadczenie klienta, ale także szeroko otwiera drzwi dla międzynarodowych klientów.
W erze mediów społecznościowych, treści wideo są królem. Dzięki automatycznemu tłumaczeniu napisów, firmy mogą łatwo dostosować swoje treści wideo do różnych rynków. To nie tylko zwiększa zasięg, ale także angażuje międzynarodową publiczność.
Podsumowanie. Teraźniejszość i przyszłość automatycznego tłumaczenia
Automatyczne tłumaczenie stało się nieodłącznym elementem biznesu w erze globalizacji. Wybór między Google Translate a DeepL zależy od konkretnych potrzeb firmy. Jedno jest pewne: technologia tłumaczenia maszynowego będzie nadal się rozwijać, oferując coraz lepsze rozwiązania dla biznesu.
W przyszłości możemy spodziewać się, że tłumaczenie maszynowe będzie wykorzystywane w coraz bardziej zaawansowanych aplikacjach, takich jak tłumaczenie w czasie rzeczywistym podczas wideokonferencji czy nawet automatyczne tłumaczenie myśli bezpośrednio na język, w którym chcemy się komunikować, za pomocą interfejsów mózg-komputer.
Automatyczny tłumacz to nie jedyne możliwości AI, przeczytaj także: Czatboty tekstowe wspomagane przez AI
Jeśli podobają Ci się treści, które tworzymy, sprawdź również: Facebook, Twitter, LinkedIn, Instagram, YouTube, Pinterest.
AI w biznesie:
- O działaniu i biznesowych zastosowaniach voicebotów
- Wirtualny asystent, czyli jak rozmawiać z AI?
- Sztuczna inteligencja w biznesie. Wprowadzenie
- AI w biznesie: zagrożenia i szanse cz.1
- AI w biznesie: zagrożenia i szanse cz.2
- Automatyczne przetwarzanie dokumentów
- Automatyczny tłumacz. Inteligentna lokalizacja produktów cyfrowych
- Czatboty tekstowe wspomagane przez AI
- Dziś i jutro biznesowego NLP
- Czy sztuczna inteligencja zastąpi analityków biznesowych?
- Planowanie wpisów w mediach społecznościowych. W czym może pomóc AI?
- Automatyczne wpisy w mediach społecznościowych? Co może dzisiejsza AI
- Nowe produkty i usługi oparte o działanie sztucznej inteligencji
- Narzędzia AI dla managera
- Sześć pluginów do ChatGPT, które ułatwiają prowadzenie biznesu
- Czat GPT wchodzi do biznesu
- Burza mózgów z czatem GPT
- Syntetyczni prezenterzy. Najciekawsze narzędzia AI do tworzenia video
- Generatywna sztuczna inteligencja dla biznesu
- Muzyka i głosy AI w materiałach firmowych
- Czat GPT-4 - nowe możliwości dla biznesu
- Przyszłość AI według raportu McKinsey Global Institute
- Co to jest NLP, czyli przetwarzanie języka naturalnego w biznesie
- Zastosowania AI w biznesie. Przegląd
- Jak sztuczna inteligencja może pomóc w BPM?
- Rola AI w podejmowaniu decyzji biznesowych
- Czym jest Business Intelligence?
- AI i media społecznościowe – co o nas mówią?
- Sztuczna inteligencja w zarządzaniu contentem
- Dziś i jutro kreatywnej AI w biznesie
- Multimodalna AI. Nowe zastosowania sztucznej inteligencji w biznesie
- Hiperautomatyzacja i jej zastosowania w biznesie
- AI w EdTech. Przykłady 3 firm, które wykorzystały potencjał sztucznej inteligencji
- Nowe interakcje człowiek — sztuczna inteligencja. Jak AI zmienia sposób obsługi urządzeń?
- Przyszłość rynku pracy. Czy AI zastąpi ludzi?
- Sztuczna inteligencja i środowisko. 3 rozwiązania AI, które pomogą Ci budować zrównoważony biznes