Sztuczna inteligencja wyznacza także nowe drogi do osiągnięcia celów ekologicznych, jednocześnie przyczyniając się do wzrostu efektywności przedsiębiorstw. Czy wiesz, że odpowiednie zastosowanie AI może zrewolucjonizować zarządzanie energią w Twojej firmie czy nawet przyczynić się do ochrony bioróżnorodności?
Sztuczna inteligencja pomaga budować zrównoważony biznes:
Przyjrzyjmy się konkretnym rozwiązaniom, które przyczyniają się bezpośrednio do rozwoju zrównoważonego biznesu.
AI może automatycznie monitorować i zarządzać zużyciem energii w firmie, identyfikując obszary, w których można wprowadzić oszczędności. Służy do tego na przykład Flex2X, system opracowany przez firmę Grid Edge z Wielkiej Brytanii. System ten łączy dane uzyskane z istniejących sensorów w budynku, na przykład czujników temperatury czy wilgotności, z innymi źródłami danych, takimi jak warunki pogodowe, i analizuje je za pomocą algorytmów sztucznej inteligencji, które mogą optymalizować zużycie energii budynku w czasie rzeczywistym.
Zastosowanie sztucznej inteligencji otwiera szerokie pole do innowacji zarówno dla firm tworzących innowacyjne rozwiązania dla rolnictwa, jak i dla wielkopowierzchniowych upraw, które wymagały pracy nieefektywnych energetycznie maszyn oraz dużego wysiłku ze strony ludzi.
Dzięki analizie danych z różnych źródeł, AI może pomóc firmom działającym w sektorze rolnictwa w podejmowaniu lepszych decyzji dotyczących nawadniania, nawożenia czy kontroli chorób roślin. Najbardziej innowacyjne są jednak rozwiązania z dziedziny rolnictwa łączące sztuczną inteligencję i robotykę. Jednym z takich rozwiązań jest LaserWeeder stworzony przez firmę Carbon Robotics, który potrafi usunąć 100 000 chwastów w godzinę precyzyjnie rozróżniając gatunki roślin. Jest to pierwszy i jedyny dostępny komercyjnie robot do usuwania chwastów za pomocą lasera. Wykorzystuje zaawansowane technologie:
LaserWeeder pomaga dbać o bioróżnorodność, ponieważ zamiast stosowania chemicznych środków ochrony roślin, które szkodzą ekosystemowi i owadom, potrafi punktowo usuwać chwasty nawet z wielkich powierzchni upraw.
AI może pomóc w śledzeniu pochodzenia produktów, co jest kluczowe dla budowy zrównoważonych łańcuchów dostaw. Wydajną logistykę w łańcuchu dostaw można natomiast osiągnąć dzięki sztucznej inteligencji i automatyzacji. Przykładowo, Amazon intensywnie inwestuje w technologie automatyzacji transportu, takie jak autonomiczne ciężarówki i taksówki Zoox nazywane robo-taxi.
Tymczasem do optymalizacji łańcuchów dostaw w firmie w czasie rzeczywistym można wykorzystać TCS Logistics Optimiser/ TCS Crystallus. Narzędzie stworzone przez Tata Consultancy Services wykorzystujące sztuczną inteligencję i uczenie maszynowe zintegrowane z rozwiązaniami z dziedziny Internetu Rzeczy (IoT) do zarządzania czasem transportu, ładownością pojazdu i optymalizacją dostępności.
Głównym kosztem środowiskowym związanym z wykorzystaniem AI w biznesie jest zużycie energii. Chociaż dokładne dane dotyczące energii potrzebnej do wytrenowania modelu GPT-4, którego używa płatna wersja ChataGPT oraz BingChat, nie są publicznie dostępne, możemy zrobić pewne oszacowania na podstawie dostępnych informacji.
GPT-4 to model z ponad 175 miliardami parametrów, który został wytrenowany na ponad 45 TB danych. Proces trenowania obejmuje analizę danych i optymalizację parametrów modelu, co wymaga dużej mocy obliczeniowej i prowadzi do wysokiego zużycia energii.
Do trenowania GPT-4 używano potężnych jednostek przetwarzania grafiki (GPU) i jednostek przetwarzania tensorów (TPU), które także są znane z intensywnego zużycia energii. Zużycie jest dodatkowo zwiększane przez energię potrzebną do samego działania.
Choć koszt środowiskowy rozwijania technologii AI jest duży, to właśnie narzędzia z dziedziny sztucznej inteligencji pozwalają tworzyć bardziej ekologiczne rozwiązania. W tym Zieloną AI, modele, które potrzebują do działania mniej energii i innych zasobów.
To właśnie “zielona AI” skupia się na opracowywaniu algorytmów sztucznej inteligencji, które są efektywne energetycznie. Na przykład, nowe metody kompresji mogą zredukować ilość danych potrzebnych do treningu modeli AI nawet o 90%, co znacząco zmniejsza zużycie energii. Pracuje nad nimi między innymi OpenAI, które inwestuje w rozwój bardziej ekologicznych modeli zielonej AI.
Sztuczna inteligencja ma wiele zalet. Zielona AI, zużywa mniej zasobów, może być zatem używana przez mniejsze firmy, także te działające w krajach rozwijających się. Oznacza to demokratyzację jej stosowania i dopuszczenie większej liczby osób do jej tworzenia. Także tych o mniej zasobnych portfelach.
Zielona AI jest przeciwstawiana tak zwanej “czerwonej AI” – czyli rozwiązaniom, które zwiększają wydajność działania nie oglądając się na koszty środowiskowe, które generują. “Czerwona AI” generuje spektakularne wyniki, jednak jej ślad ekologiczny jest duży. A w związku ze skokowym rozwojem technologii, wpływ na środowisko nieustannie rośnie.
Sztuczna inteligencja jest także wykorzystywana do rozwiązywania problemów ekologicznych, takich jak:
Odpowiednie wykorzystanie AI i praca nad coraz bardziej zieloną AI może wpłynąć na wiele aspektów zrównoważonego biznesu i środowiska. Od optymalizacji działania sztucznej inteligencji, czyli tworzenia zielonej AI, przez automatyzację zarządzania energią, zoptymalizowane rolnictwo, aż do tworzenia zrównoważonych łańcuchów dostaw. To ostatnie w kontekście rosnących potrzeb logistycznych staje się kluczowe dla efektywności i odpowiedzialności przedsiębiorstw.
Zastosowanie sztucznej inteligencji niesie ze sobą również poważne wyzwania, takie jak zużycie energii w fazie treningu i bieżącego funkcjonowania modeli AI. Do rozwiązywania tych problemów i zmniejszenia wpływu na środowisko jej własnego działania wykorzystywana jest jednak także sztuczna inteligencja. Jest tu więc miejsce na rozwiązania z dziedziny zielonej AI oraz zaangażowanie w zrównoważone praktyki na niespotykaną dotąd skalę, od analizy zmian klimatycznych po ochronę bioróżnorodności.
Jeśli podobają Ci się treści, które tworzymy, sprawdź również: Facebook, Twitter, LinkedIn, Instagram, YouTube, Pinterest.
Autor: Marta Matylda Kania
Założycielka Superpowered by AI. Opracowuje dla biznesu procesy tworzenia treści przez generatywną sztuczną inteligencję. Interesuje się przyszłością AI w biznesie, pisze zaawansowane prompty i prowadzi szkolenia z ChataGPT dla firm.
Produktywność jest w ostatnim czasie szczególnie często poruszanym zagadnieniem. Powodem takiego stanu rzeczy jest fakt,…
Specjaliści od zarządzania zasobami ludzkimi są odpowiedzialni za szereg ważnych decyzji. Wybór odpowiedniego kandydata przyczyni…
Wraz z ukształtowaniem się nowych pokoleń, zmianom ulega również środowisko i kultura pracy. Generacja Y,…
Badania przeprowadzone przez firmę Owl Labs wskazują, że już 16% organizacji pracuje w trybie zdalnym,…
Wykorzystanie sztucznej inteligencji sprawia, że możemy komunikować się z naszymi urządzeniami używając języka naturalnego –…
“Zamknij okno!” wypowiedziane do asystenta AI będzie oznaczać co innego, gdy pracujemy w edytorze tekstu,…